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FOREWORD

This is a final report on the researchproject, "Instability WaveModelsand SupersonicJet

Noise." The report titled "The Effectsof Velocity Profileson SupersonicJet Noise" presented

someof theearlierwork doneonthis researchprojectand,therefore,is not repeatedhere.Recent

researchactivities weredirectedin theareaof "Nonlinear Stabilityof SupersonicJets."

The funding for this research was provided by the NASA Langley Research Center through

the Grant NAG-l-1518. The grant was monitored by Dr. John M. Seiner of Aeroacoustics

Branch (Fluid Mechanics and Acoustics Division), Mail Stop 165, NASA Langley Research

Center, Hampton, VA 23681.
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NONLINEAR STABILITY OF SUPERSONIC JETS

T. R. S. Bhat* and S. N. Tiwari§

Department of Mechanical Engineering

Old Dominion University, Norfolk, VA 23529-0247

ABSTRACT

The stability calculations made for a shock-free supersonic jet using the model

based on parabolized stability equations are presented. In this analysis the large-

scale structures, which play a dominant role in the mixing as well as the noise

radiated, are modeled as instability waves. This model takes into consideration

non-parallel flow effects and also nonlinear interaction of the instability waves. The

stability calculations have been performed for different frequencies and mode num-

bers over a range of jet operating temperatures. Comparisons are made, where ap-

propriate, with the solutions to Rayleigh's equation (linear, inviscid analysis with

the assumption of parallel flow). The comparison of the solutions obtained using

the two approaches show very good agreement.
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1. INTRODUCTION

The aerospaceengineering community has placed a major emphasison the

development of a high speed civil transport aircraft. The successof this effort

hingeson severalfactors. Oneof the major problems that needsto be addressedis

the environmental issueof the noisegeneratedby aircraft at take-off, cutback, and

approachenginepowersettings. Jet noiserepresentsa significant percentageof the
overall noise generated. Hence,the reduction of jet noise is of utmost importance
to future development of a supersonic civil aircraft. This has led to a revival of

interest in developingtechniquesto predict and ultimately suppressnoiseradiated

by supersonicjets.
Severalapproacheshave been developedfor the prediction of jet noise. One

suchapproachis the direct numerical simulation of the full Navier-Stokesequations
for the estimation of the radiated noise. This technique,although exact, is not prac-

tical becauseof the requirementsof the computational resources. This has led to
developmentof models basedon simplified governingequations. Mankbadi et al.1

developedsucha technique by using large-eddy simulation to model the flow field

and calculated the far-field noise by applying Lighthill's acoustic analogy. These

techniques also require extensive computational power. Recently, there has been
lot of focuson extending computational fluid dynamics techniquesfor aeroacoustic
applications. The developmentof these techniquesare not simple as the require-
ments on numerical dissipation, dispersion,etc. for acoustic analysisare very rigid,
seeTam2.

A different approach for the prediction of jet noise is based on combining the-

oretical and analytical methods. It is well established that turbulent flows possess

coherent large-scale structures. These structures control the turbulent mixing pro-

cess and also play a dominant role in the noise generation process. It has been

successfully shown, in free shear layers such as plane mixing layers and jets, that

the large-scale motions can be modeled as a random superposition of instability

waves. The noise generated by these waves compare well with the experimental

data. A good review of this approach is presented in Tam 3. This model can be

used to determine the two important characteristics of an instability wave, phase

velocity and growth rate, which determine the mixing as well as the noise radiated.

Most of the earlier theoretical studies of supersonic jets have considered linear,
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inviscid analysisand haveassumedthe meanflow to be parallel. Tam and Burton4

took into considerationthe non-parallel flow effectsby usingthe method of multiple-
scales. The real physical processof jets involve nonlinear interaction among all

turbulence scales.The nonlinearities consideredin this paper may be divided into

nonlinear interaction between the instability waves and the mean flow, and the
nonlinear self interaction of the instability waves. The former leadsto a changein

the mean-flowdistribution, which in turn will modify the axial developmentof the
instability waves.This kind of nonlinear effect can be taken into account by using

measuredmean velocity data. However, this data is not alwaysreadily availablefor
different flow conditions. The effectsof nonlinear self-interaction of the instability

waveshavebeenneglectedin all the earlier studies by assumingthat the amplitude
of the disturbances, which initiate the instability wavesnear the nozzle exit, are

small. This assumptionmay not be valid in all cases.

In this study, nonlinear stability analysisof supersonicjets is considered. This
analysisalsoaccountsfor non-parallel flows. The nonlinear interaction of the waves

arepredicted by the solving the parabolized stability equations(PSE). Bertoloti et
al.5 and Chang et al.6 have applied PSE basedtechnique for the stability analysis

of incompressibleand compressibleboundary layers. The mean flow varies slowly

in the axial direction enabling one to decomposethe perturbation quantities into a
rapidly varying wave-like part and a slowly varying shapefunction. The PSE can
then bederived from the Navier-Stokesequationsby applying parabolizing approx-

imation to the shapefunction. The simplified governing equations can be solved

by marching along the streamwisedirection. This method is not computationally
expensive.

In this report stability calculations of supersonicjets using the PSE are pre-

sented. The calculations have been performed for different frequenciesand mode

numbers over a range of jet temperatures, from cold to hot. In section 2, the de-
velopmentof the PSE model is presentedand in section 3 computational procedure
is described. The numerical results obtained for different casesare presented in

section 4. Finally, in section 5, a summary of the results is given and also waysof

improving the model and plans for future work are discussed.



2. ANALYSIS

Considerthe developmentof instability wavesgeneratedin a shock-freejet. It

is assumedthat the instability wavesaregovernedby the compressibleequations of
motion, energyand state for a perfect gas. The flow variables aredecomposedinto

a mean value and a perturbation quantity

f(r,O,x,t) = ](r,O,x) + f'(r,O,x,t) (2.1)

where f is any flow variable and (r, 8, x) is the polar coordinate system with x in

the axial direction. The governing equations for the disturbances are obtained by

substituting the form given by equation (2.1) in the governing equations and sub-

tracting the equations for the mean flow. The resulting equations can be expressed

as

0¢ 0¢ 0¢ C0¢ 02¢ . 02¢
r_- + A_xx + B_-_ + --_r+D¢=V_xox----i+v_,'_xxffr

" 02¢ " 025 " 02¢ 02¢ (2.2)
+ Vrr-5-_: + vrOO---;-_ + vO_O-YS-z+ Yoo 00-----_

where ¢ is the disturbance vector and is given by ¢ = (/,u',v',wt,p') T. The

coefficient matrices, F, A, B, ..., Vo_ and Voo are composed of a linear part and a

nonlinear part. The linear part (denoted by superscripts l) contains only mean flow

quantities and the nonlinear part (denoted by superscripts n) contains disturbance

quantities , i.e. r = r t + r n, etc. Equation (2.2) can then be rearranged as

0¢ I 0¢ _0¢ t 0¢ 02 ¢
V --_+A -_x+B -_+C _-_r +Dt¢-V_(gx2

(92 02_V t 02¢ l ¢ _zt 02¢ ¢
r OzOr V;_ 0r 2 "_0 0--_-0 V_ O00z

02¢ F"- vgoTe - (2.3)

where F" includes allnonlinear interactionterms associated with the disturbances

and is given by

F" = -F" 0__.¢¢_ A" 0¢
at Ox

02¢ . . 02¢
+ VAOx2 + vi,.O--_r

Tz,,02 ¢
+ ,oo-5_

_ _ B.O¢ _C.0¢
(90 Or D"¢

• .(9_¢ ..02¢ .. 02¢
--+ + + 0-- z

(2.4)
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The governing equations (2.3) have to be parabolized to enable a marching
solution in the streamwisedirection. This is accomplishedby decomposingthe dis-
turbancesinto a rapidly varying wave-likepart and a slowly varying shapefunction.

The wavepart retains its ellipticity while the governingequationsfor the shapefunc-

tion are parabolized. We assumethat the disturbance vector ¢ for an instability
wave'with a frequency mw and azimuthal mode number n can be expressed as

Z Z (2.5)
VgI_ -- OO n O_

where the wave-like part X-,- is given by

Xm, = exp{i [_i am,(_)d_ + nO- mwt] } (2.6)

c_mn is the axial wavenumber and _m,, is the shape function vector given by _m, =

(t_, _, _3,tb,/3) T. As the shape function is assumed to vary slowly with the streamwise

direction x, the second derivative 02ad/Ox 2 is very small and is neglected. The

governing equations for the shape function of a single mode (m, n), using the form

given by equation (2.5), can then be written as

Omn ffffmn @ ArnnO_rnnox _-CmnOffffmnoT -- girt 02_ffmnor2

+ P_,,/.Am, (2.7)

where

The nonlinear forcing function/bin, Can be evaluated from the Fourier series expan-

sion of F"

F"(r,O,x,t) = E E Frnn exp[i(nO -- mwt)] (2.8)
In oon oo

In equation (2.7), the elliptic effect associated with the wave part is absorbed in

matrices/), A and C aaad does not contribute to the upstream influence. However,

the term O_/Ox allows upstream influence in subsonic regions of the flow. In order

to make equation (2.7) truly parabolic, O_/Ox is multipled by a constant f'/given

by

_tM2
O = l+(7--1_Mg, M, < 1 (2.9)

1 M. > 1



5

whereMs is the local Mach number. This parabolizing procedure yield solutions for

the paxabolized Navier-Stokes equations which compare well with those obtained

by the full Navier-Stokes equations, see Rubin 7.
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3. NUMERICAL SCHEME

The parabolized stability equation (2.7) is solved numerically by finite-

differencing the derivatives with respect to x and r. In the formulation given below,

¢2i,j represents the shape function with an axial location index i and radial location

denoted by index j. The streamwise derivative at (i, j) is replaced by a second-order

backward difference given by

0_
ax -- ( 3 ff2 i'J -- 4 ff2 i- i 'J -b ffJ i_ 2,j ) / 2 /k x (3.1)

for all axial locations except for the starting plane where a first-order backward

differencing is used. The resulting discretized equation for the i-th axial plane is

3 A + Ck _ V. l 02 ] _'_i,j = Ai,j(i_i-i,j- _'_i-2,j)/2ix + P/._ (3.2)
f) +

where for convenience, the subscript mn which identifies the mode (m, n) is dropped.

The radial derivatives are discretized using a fourth-order central differencing and

are given by

a____ = -- _ i ,j + 2 "_- 8kX)i,j+l -- 8 ffff i ,j --1 "_- ff_ i ,j -- 2 (3.3)
Or 12At

02_ _ -_i,j+2 + 16¢2i,j+a -- 30_ij + 16¢2i,j-1 -- ¢2i,j-2 (3.4)
0r 2 12At 2

The above finite differencing scheme is replaced by a second-order scheme for the

grid point next to the boundary. The second-order scheme can be written as

0_
a---_ = (_2i,j+l - ¢2i,j+l)/2Ar (3.5)

02_

Or2 - (kvi,j+a - 2q2i,j + ffffi,j-1)/2 Ar2 (3.6)

The finite difference formulations given above are substituted into equation (2.7).

This coupled with the boundary conditions results in a block penta-diagonal system

of equations (block size of 5 x 5) at each axial location for the unknown shape

functions, _,,,.

The boundary conditions have to be prescribed for the eigenfunctions at the jet

centerline and at a radial location of infinity. As the governing equations become



singular at r = 0, L'Hospital's rule is applied at the centerline to obtain a new set of

governing equations. The boundary conditions along the centerline takes a different

form based on the azimuthal mode number. For example, for axisymmetric mode,

i.e. n = 0, the boundary conditions at r =0 are given by

= = o, OColOr= = 0 (3.7)

Here, the velocity components fi, ,3, @ are in the r, O, x directions, respectively. The

boundary condition on density is obtained from (3.7) and the discretized continuity

equation. At the outer boundary, far from the centerline, all the shape functions

are set equal to zero. For the nonlinear analysis, the far-field boundary conditions

can be directly applied for all modes except for modes with zero frequency (m = 0)

and axisymmetric mode (n = 0). The case of m = 0 and n = 0 is referred to as

the mean flow correction mode. For this mode, the condition fi = 0 is replaced by

0 /0r = 0.
The solution procedure is as follows: start with a known solution for _m, and

_._. at x = x0, assume a value for amn at the next axial location, march the PSE

to the next station by solving for _m.. The new value of am. is determined from

i d_m.

O_mn, new = OCrnn, old I_rn n dx (3.8)

and this process is repeated until the difference between the assumed and computed

values of OLrnn is less than a given tolerance. The updating procedure given above is

equivalent to normalizing the shape function such that dff2/dx is zero at a particular

radial location. As the shape function vector • is a function of r and contains five

dependent variables, there is no unique wavenumber as in the liner theory for parallel

flows. However, as shown by Chang et al.6, the total growth rate appears to be very

weakly dependent upon the normalization. Further details of the normalization and

its effect on the computed wavenumber are given in Chang et al.6. In all the results

presented here, we have chosen to compute the wavenumber based on streamwise

velocity using

amn, ,,_ = o_m,, o,a - i f_ fi'Ofi/Ox dr (3.9)
fo l d,

where • denotes complex conjugate.
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4. NUMERICAL RESULTS

The PSE has been used to analyze the linear stability of a supersonicjet is-

suing from a circular nozzleoperating at designMach number of 2.0. It has been
assumedthat the axial evolution of the instability wavescan be treated asan invis-

cid phenomenaand _'mnin equation (2.7) is zero. The results obtained for parallel

flows using the PSE are comparedwith the solutions to equation governing linear,
inviscid instability wave, i.e., the compressibleRayleigh's equation. The solutions

to the Rayleigh's equation (RES) are obtained using the method of Seiner, Bhat
and Pontons. For both the approaches,i.e., PSE and RES, the mean flow field is
assumedto be known. It has been shown that the mean velocity profile can be

closelyapproximated by a half-Gaussianfunction given by

{ we(x) r < hW(x) = Wc(x)exp[-ln2(r- h)/b 21 r > h
(4.1)

where h(x) is the radius of the potential core, b(x) is the half-width of the shear

layer and W¢(x) is the jet centerline velocity. For the present calculations, the

values of these parameters are obtained from computational data of Viswanathan

et al. 9.

Calculations have been performed for a range of frequencies and the modes

considered are n = 0, the axisymmetric mode, n = 1 and 2, the helical modes.

These calculations were carried out over a range of jet operating temperatures.

However, for conciseness, the results for n -- 1 mode are shown here for a cold

jet. The two most important characteristics of an instability wave are the phase

velocity and growth rate. The phase velocity is defined as as 27rf/ar where f is the

frequency and ar is the real part of the complex wavenumber a. The growth rate is

defined as -ai where ai is the imaginary part of the wavenumber. Figures 1 and 2

compare the phase velocity and growth rates obtained using the two approaches at

two different axial locations. It can be seen that over the entire range of Strouhal

number (St = 2frj/Wj) considered, the two solutions are in very good agreement.

Similar agreements are also obtained for n = 0 and 2. Figures 3 and 4 show

the comparison as a function of downstream distance for axisymmetric mode (n

= 0) at St = 0.54 and the helical mode (n = 1) at St = 0.49. Once again, the

agreement is excellent for both the phase velocity and growth rate. As mentioned
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before, calculations havealsobeenperformed for hot jets obtaining good agreement
betweenthe solutions using the two approaches.

The results presentedso far have been obtained for parallel flows. We now

consider the solution of linear PSE with non-parallel flow effects. As in any marching

scheme, an initial solution is needed to start the computations. To provide a good

starting solution, the multiple-scales analysis can be used which accounts for non-

parallel flow effects. It has been shown by Chang et al. 6 that using any incorrect

initial conditions result in a transient phenomena close to the jet exit. Furthermore,

it was observed that the PSE approach is capable of recovering the correct solution

in the marching process provided the input initial conditions are close to the correct

solution. In this study, the linear parallel stability equations are solved and the

eigenvalue and eigenfunctions are used as the starting solutions.

The linear PSE with non-parallel flow effects have been solved for several cases.

Figures 5 and 6 show the results for two of these cases. Once again, calculations

are carried out for a cold supersonic jet operating at its design Mach number of

2.0. In figure 5, the variation of the wavenumber (real part) and the growth rate

with axial distance is presented for axisymmetric mode (n = 0) at St = 0.54.

The results from parallel stability theory are included for comparison. As can be

seen, the wavenumber and the growth rates start off being less than those based

on parallel theory. After some initial transients, both the wavenumber and growth

rate are larger than those from parallel theory. This implies that the wave based

on non-parallel flow has a lower phase velocity than the wave based on parallel

flow. In addition, the wave corresponding to the non-parallel flow gets damped

further downstream than that obtained using paxailel flow assumption. The results

for helical mode (n = 1) at St = 0.49 are presented in figure 6. Similar trends as

in axisymmetric mode are observed. The only difference is that the wavenumber

based on parallel and non-parallel mean flow are more or less the same.

The eigenfunction distribution for the cases discussed above are presented next.

Figure 7 shows the radial distributions of the eigenfunctions for the axisymmetric

mode, St = 0.54 at X/Rj = 0. The eigenfunctions shown are the radial velocity

component, fi, axial velocity component, tb, and pressure,/_. For this case, the az-

imuthal velocity component, 5, is zero. As can be seen, the axial velocity component

is very large and peaks in the shear layer. These eigenfunctions further downstream,

at X/Rj = 10, are presented in figure 8. The amplitude of the pressure eigenfunc-
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tion has increasedslightly while the amplitude of the axial velocity componenthas
decreasedsubstantially. The axial location for peak noise emission, basedon the
experimental observationsof Troutt and McLaughlin l° and Seiner, et al.11,occurs

near eachwave'sneutral point. This suggeststhat the amplitude of pressurewould
increasewith downstreamdistanceuntil the wave hasbecomedamped.

The eigenfunctionsfor n = 1, St -- 0.49 at two axial locations, X/Rj = 0 and

X/Rj = 10 are shown in figures 9 and 10, respectively. In this case, the azimuthal

velocity component is nonzero. It can be seen that the trends are similar to that of

the axisymmetric mode. The only difference is that the amplitude of the azimuthal

velocity component, _, has increased. Converged solutions to the nonlinear PSE

could not be obtained. Currently, this problem is being investigated. Some of the

possible reasons for not getting converged solutions are discussed in the next section.
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5. DISCUSSIONS AND CONCLUSIONS

In this study, a model for linear and nonlinear stability analysis of supersonic

jets is developed using the parabolized stability equations. The linear PSE has

been used to analyze the instability waves of a supersonic jet operating at design

conditions, i.e., shock-free. For parallel flows, it has been shown that the PSE

approach and the solutions to Rayleigh's equation are in very good agreement over

a range of frequencies and azimuthal mode numbers. The axial development of the

instability waves also compared well. These calculations also considered a range of

jet operating temperatures from cold to hot. The important characteristics of the

instability waves, i.e., phase velocity and growth rate, are predicted well using the

PSE.

The linear PSE model has also been used to study the non-parallel flow effects.

The computed solutions show that the growth rate is higher and the wave's phase

velocity is lower than that corresponding to the parallel flow. This expected trend

is seen for instability waves of different frequencies and mode numbers. We have

assumed that the dynamics of the axial development of the instability waves can be

treated as an inviscid phenomena. At distances far downstream from the jet exit

the instability wave would no longer grow in amplitude and is damped. At these

locations the governing equations become singular and the integration contour must

be deformed around the critical point, see Tam 12 and Tam and Morris 13. In this

study, the calculations are terminated close to the neutral point of the wave.

The results presented here are preliminary and is by no means complete. In

order to improve this model, there are several issues that need to be investigated.

First of all, the solutions obtained from linear parallel stability equations have been

used as the initial conditions for the marching scheme. The sensitivity of the initial

conditions to the converged solutions have to be studied. Solutions obtained using

the multiple-scales analysis, which accounts for non-parallel flow effects, can be

used as the initial conditions for the eigenvalue and the eigenfunctions. Secondly,

to circumvent the problem associated with the damped inviscid wave and to study

the effects of Reynolds number, viscous terms have to be included in the analysis.

As mentioned before, converged solutions to the nonlinear PSE could not be

obtained. It appears that the initial amplitudes of the various waves considered

play a critical role in getting converged solutions. Furthermore, the selection of the
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waves,with nonzero initial amplitudes, also influences the iterative process. The
effectsof the initial amplitudes and the choiceof the waveson getting converged
solutions should also be investigated. The solutions obtained from nonlinear PSE

analysis,after all the issuesrelated to convergencehavebeenidentified and resolved,

can be validated by comparing it to solutions computed from nonlinear numerical
simulation, for example, the results of Viswanathan and Sankar14.
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